Suspended Sediment and Flow: Understanding Change Over Time

Golden Gopher Football

Flow like Football..

- •Is there a significant change
- •Why does it change
- Real vs Speculation

Suspended Sediment and River Flow

Change over Time: Evaluating Reality

"8 Goths and 22 Norwegians on exploration journey from Vinland over the west... We were and fished one day. After we came home, 10 men red with blood and tortured. Hail Virgin Mary, save from evil. Have 10 men by the sea to look after our ship, 14 day - journeys from this island year 1362."

Shawn Schottler¹, Jason Ulrich², Dan Engstorm¹, Rick Moore³ Patrick Belmont⁴

1. St. Croix Watershed Research Station, 2. Univ. of Minnesota, 3. MN State Univ. Mankato 4. Utah State University

Support provided by: LCCMR:Minnesota Environment and Natural Resources Trust Fund MN Pollution Control Agency, EPA Section 319 Grant

Kensington Runestone

Found 1898 by Olof Ohman While removing stumps in a field near Kensington Minnesota.

TSS, Flow and the Stone Exercises in Evaluating Reality

Observation

Evidence

Interpretation

Response

Real or Not Real?

Excess Suspended Sediment— Turbidity a serious water quality impairment

Confluence of St. Croix and Mississippi Rivers (80% of sediment load from Minnesota River)

MINNESOTA

Washington County

twincities.com

PIONEER PRESS

MediaNews@roupalCammaWednesday, December 25, 2012

50stents

Lake Pepin: Archive of MINN Erosion History

ByBradPitt2
pitt@pioneer.com2

Lake blah blah blah, scientists blah blah blah, corn blah blah blah, sediment blah blah blah agriculture, He said blah blah an

Cities farms aliens blah blah blah, blah blah blah, corn blah blah blah, sediment blah blah blah water water everywhere, blah blah blah bl-ah. He says blah blah natural environment blah blah, no end in sight. Stadium.

Rare lake serves as fortune teller of the past.

Chuck®Norris®named® defender® of® unique® riverine®ake.®

Applies for conceal-carry permit from Wisconsin

Cities farms aliens blah blah, blah blah blah, sediment water water everywhere, blah blah blah blah blah blah blah natural environment blah blah, no end in sight. Stadium.

rates over time

Lake Pepin: Natural Im 80% of Sea MN- Rive

Lake Pepin Sediment Accumulation History

We can't solve the problem until we understand what is causing the changes.

What is the source of the sediment?

Lake Pepin Sediment Accumulation History

Lake Pepin Sediment Fingerprinting:

Sediment Eroded from Streambanks

Changes in Hydrology: Compare watersheds with Differences in Drainage & Crops

Hypothesis: Have rivers become more erosive?

Test for Hydrologic Changes:

- -over time
- -between watersheds
- -link to amount/density of drainage
- -"normalize to climate"

River Flow

- Has flow increased?
- 21 watersheds flow records 1940- 2009
 - Compare Different Watersheds.

Change in Flow

Cottonwood River

Increase <u>significant!</u> Kendall tau p<0.05

1940 - 1975 Median = 7.8 cm

1976 - 2009 Median = 13.7 cm

75% increase

Increase in Flow 1940-1975 vs 1976- 2009

- -Change is large, 40 - 100% increase
- -Changes are not random

Is Rainfall the Driver of Flow?

What if we simply plot flow as a function of Precip

- As Precip increase
 Flow increase
- Cumulative approach accounts for antecedent effects
- Strong correlation
- Rainfall is driver of flow!
- Are we sure ?

What if we separate this into different time periods

Cottonwood River Annual Flow vs Precip 1940 - 2009

Increase in flow above and beyond increase due to increases in precip

Precip is a driver of flow, but the relationship between flow and precip has clearly changed over time...why

Cummulative Precipitation (cm)

Cottonwood River

Rum River

Changing Crops

Change in Soy Acres and Flow for all 21 Watersheds

Seasonal Change

May-June

- Largest increase in flow
- No increase in rainfall (increase is in autumn)
- 40% of sediment load

Flow increasing during time of year where water use by crops has decreased

What has changed: 1940-1975 vs 1976-2009

Precipitation

Yes: Correlated to flow increase

Cropping Patterns increase in soy, loss of hay, pasture

Yes: Correlated to flow increase

Artificial Drainage

Yes: Correlated to flow increase

Effect of Soybeans on Gopher Football

% S. MN land in soybeans

Lots of things are correlated....

Changes in Precip, Crop conversion and Drainage Installation are Coincident

How do we apportion changes in flow between

- climate, precipitation
- crop conversion
- drainage

Need Math

Precipitation is only half of the story...!

Evaporation and Transpiration

Crop Conversion and Artificial Drainage

Can change ET

...the invisible process of disappearing water

Over the long term, water budget simplifies to...

Function of temp, solar radiation, crop type, residence time and precip

Can't solve for by difference because: ET is not just one thing

Changes as temp and precip change

Changes with crop conversion

$$Q = P - ET_{climate} - ET_{crop} - ET_{other}$$

Changes not captured by climate and crop

- water residence time on landscape,
- incremental, on-going changes in storage

Changes due to artificial drainage

Solve by looking at long-term, non-linear relationship of flow to: precip, climate, crop...

Drivers of Changes in Flow for 21 Watersheds

~1/3 of change due changes in precip, or crop conversion

>50 % of change due artificial drainage

Artificial Drainage is a significant driver of changes in flow

It's all about Residence Time

Artificial drainage reduces water residence time—thus decreasing time for ET—more water available to river.

Water that used to evaporate is now routed to rivers

Estimating Loss of Depressional Area

Inventory of drained areas— USFWS data from infrared air photos

Drained Wetland/Depression

Water storage <u>time</u> on 12-18% of the total land area has been greatly reduced!

Supporting Evidence: Does change in flow correlate

to loss of depressional area?

Drained Depressions, % of watershed area

- Increase in flow linked to loss of depressions
- Supports Conclusion that..

Artificial Drainage accounts for a majority of changes in flow

Consequences

Increased flow causing river channels to widen.

Blue Earth, LeSueur and Minnesota Rivers 15-40% wider

Widening is source of non-field sediment

From P. Belmont and W. Lauer

Consequences

% Increase in Channel Width

8 = 0.92

R2 = 0.92

R2 = 0.92

R3 = 0.92

Increase in Annual Water Yield (cm)

Drainage increase flow—channel widening

Recall Lake Pepin,
(history of watershed
erosion rates)
Non-field loading
increased by 5X

Artificial Drainage is an important driver of watershed scale changes to sediment loading--turbidity

Evaluating Reality

Stone = Real Runic carvings = Real

Who carved them = interpretation

Vikings explorers vs. Olof Ohlman

Evidence favors Olof

Flow increase = Real, measured Sediment increase = Real, measured

Cause of increases = interpretation

Climate vs. Drainage vs other

Evidence says >50% drainage

Interpretation Supported by Solid Evidence

Drainage changes water residence time

Which decreases ET losses

Increasing streamflow

Making rivers more erosive

Increasing non-field suspended sediment loads

Management needs to be based on reality, science needs to describe reality